首页> 外文OA文献 >Expanding sensor networks to automate knowledge acquisition
【2h】

Expanding sensor networks to automate knowledge acquisition

机译:扩展传感器网络以自动获取知识

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The availability of accurate, low-cost sensors to scientists has resulted in widespread deployment in a variety of sporting and health environments. The sensor data output is often in a raw, proprietary or unstructured format. As a result, it is often difficult to query multiple sensors for complex properties or actions. In our research, we deploy a heterogeneous sensor network to detect the various biological and physiological properties in athletes during training activities. The goal for exercise physiologists is to quickly identify key intervals in exercise such as moments of stress or fatigue. This is not currently possible because of low level sensors and a lack of query language support. Thus, our motivation is to expand the sensor network with a contextual layer that enriches raw sensor data, so that it can be exploited by a high level query language. To achieve this, the domain expert specifies events in a tradiational event-condition-action format to deliver the required contextual enrichment.
机译:科学家们可以使用精确,低成本的传感器,从而导致在各种体育和健康环境中的广泛部署。传感器数据输出通常采用原始,专有或非结构化格式。结果,通常难以向多个传感器查询复杂的特性或动作。在我们的研究中,我们部署了一个异构传感器网络来检测运动员在训练活动中的各种生物学和生理特性。运动生理学家的目标是快速识别运动中的关键间隔,例如压力或疲劳时刻。由于传感器级别低和缺乏查询语言支持,当前无法实现。因此,我们的动机是通过上下文层扩展传感器网络,该上下文层丰富了原始传感器数据,以便可以由高级查询语言加以利用。为此,领域专家以传统的事件-条件-动作格式指定事件,以提供所需的上下文丰富性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号